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Executive Summary  
 
Communities, transportation service providers, and planning agencies are often required to identify 
service areas within which transportation vehicles can operate. The selection of which neighborhoods 
are included in or excluded from a service area can have significant implications on the level of 
accessibility, economic sustainability, and congestion reduction potential of a transportation system. 
This report presents optimization-based methods for the design of transportation service areas. The 
optimization-based approaches proposed in the report can be used to guide the service area design 
process given multiple conflicting objectives and constraints. 
   
The main contribution of this report is twofold. First, optimization models are presented for service area 
design problems that simultaneously account for the goals of system operators and users, with 
particular emphasis on the objectives of reducing congestion and enhancing equity-in-access to 
transportation services. The models account for spatial coverage constraints that are specified in real-
world situations to ensure equitable access to transportation services. Two service area design 
applications are considered in this report. In the first application, the problem of designing transit routes 
and the accompanying paratransit service area is examined. This problem is of practical interest to 
transit agencies in the United States given federal regulations that set minimum spatial coverage of 
paratransit services based on fixed transit route alignments. In the second application, the problem of 
defining the service area for dockless micromobility services is considered. This design problem is also of 
practical interest given the goal of cities to ensure equitable spatial access for emerging travel 
alternatives and the need for these alternatives to be economically viable.  
 
Second, this report contributes a set of genetic algorithm-based heuristics that are designed to search 
for solutions to the proposed problems. In the heuristics, service areas are represented as polygons that 
are modified using easy-to-implement geometric operations. The performance of the heuristics was 
examined in numerical tests that also illustrated the application of the design models. The San Juan 
Metropolitan Area was used as a case study for the application setting of the methodology for the 
design of paratransit service areas and transit route networks, while the city of Mayagüez was used as 
the application setting of the methodology for the design of micromobility service areas. 
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Chapter 1. Introduction 
 
As new travel alternatives emerge and existing services are redesigned, communities, transportation 
service providers, and planning agencies are often required to identify service areas in which 
transportation services can operate. The selection of which neighborhoods are included in or excluded 
from a service area can have significant implications on the level of accessibility, economic sustainability, 
and congestion reduction potential of a transportation service. As is often the case in transportation 
planning processes, the various stakeholders concerned with service area design issues have objectives 
that do not necessarily align with each other, which is why deliberative processes are often required 
before a design is operationalized. In response to this practical planning problem, the primary goal of 
this report is to present a quantitative approach that can be used in decision-making processes to 
generate alternative service area designs given multiple objectives and spatial coverage constraints. In 
this report, a spatial coverage constraint refers to a requirement that a set of zones in the study area is 
contained by a service area design. A prime example of this type of constraint is observed in the laws 
(e.g., Americans with Disabilities Act) and regulations governing paratransit services in the United States, 
which mandate that any agency that operates a fixed route transit system must provide paratransit 
services within at least three-fourths of a mile on each side of the transit routes.  
 
The contribution of this report is twofold. First, spatial optimization models are presented for multi-
objective service area design problems, with particular emphasis on the operational and equity-in-
access objectives of service operators and users. The proposed models account for spatial coverage 
constraints that are present in real-world planning situations. Second, this report contributes genetic 
algorithm (GA)–based heuristics to solve the proposed design problems. Optimization models are 
presented for two service area design problems: 

 
i. Paratransit Service Area Design Problem: The first problem considers the design of paratransit 

service areas in the context of Americans with Disabilities Act (ADA) regulations that transit 
operators in the United States must satisfy. Given the relationship between paratransit service 
areas and the alignment of fixed transit routes, a combined transit route network and paratransit 
service area design model is proposed. The design problem is formulated as a multi-objective, 
mixed integer optimization problem with constraints. Three design objectives are considered: 
maximizing the operational effectiveness of the fixed route transit service, maximizing the 
operational effectiveness of the paratransit service, and maximizing equity-in-access for both. 

ii. Micromobility Service Area Design Problem: Cities are interested in micromobility service areas 
(MSA) as they are one of the system features that can be designed to ensure that historically 
disadvantaged communities have access to micromobility services (e.g., shared e-scooters, 
bicycles) (Blickstein et al., 2019; Price et al., 2021). Naturally, micromobility operators are also 
interested in the design of their service area as it has a direct impact on the demand for their 
vehicles. In this report, a bi-objective optimization problem is proposed for the design of 
micromobility service areas considering the operators and planning agencies’ perspectives. 

The report is organized as follows. A literature review is presented in Chapter 2, which focuses on the 
optimization methods developed to design service areas, as well as other works that consider the 
related concepts of coverage areas and shape constraints. The design problems are discussed in Chapter 
3, and the heuristics in Chapter 4. Illustrative applications of the models and the heuristics are presented 
in Chapter 5, followed by a summary of the developed methods, as well as opportunities for future 
research, in Chapter 6.   
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Chapter 2. Literature Review 
 
A transportation service area is defined in this project as a region within which a vehicle (e.g., bus, 
e-scooter) can operate to provide a service to population groups. A related concept is a coverage area, a 
term usually used in the literature to refer to areas of influence around a system component, such as a 
bus stop, from which it is reasonable to expect that demand for a service could originate. Coverage 
areas are often incorporated in transit network design optimization models (Ibarra-Rojas et al., 2015), 
particularly to account for accessibility objectives. For example, Murray (2003) proposed a set covering 
problem to find the stop locations that maximize access to a transit service. Wei et al. (2017) extended 
this work by presenting a problem that considered both operational effectiveness and access equity in 
the selection of transit routes; access equity was measured in terms of the disadvantaged populations 
living within the transit stop coverage areas. Set covering problems and coverage area considerations 
are also present in location problems for vehicle charging stations, as in the work of Tang et al. (2011) 
who used Voronoi diagrams to define charging coverage areas. 
 
As in the case of coverage problems, service area problems have also been approached from an 
optimization perspective. Chang and Schonfeld (1991) proposed analytical models to compare fixed 
route conventional bus and flexible route subscription bus systems for providing feeder services to a 
single point. Their analytical models can be used to optimize rectangular service areas for the flexible 
route service. Li and Quadrifoglio (2009) also proposed an analytical model that can be used to compare 
the operations of fixed route and flexible route feeder services and, in particular, to determine the 
optimal number of zones for each type of operation. Kim and Schonfeld (2013) proposed nonlinear mixed 
integer optimization problems for the design of a mixed-fleet transit system composed of conventional 
and flexible bus services; in this model, multiple rectangular service areas can be optimized. Additional 
analytical models to optimize rectangular service areas for flexible route bus service, among other 
service features, can also be found in the work by Nourbakhsh and Ouyang (2012), Kim et al. (2019), and 
Kim and Schonfeld (2012, 2014). Although these analytical models only consider rectangular service 
areas and make other significant assumptions regarding, for example, the physical space of operation 
and the spatial distribution of demand, they offer valuable, computational, inexpensive insight about 
the operations and service quality of different types of bus services, and they provide general guidance 
regarding their design. The work by Pan et al. (2015) extends previous work on flexible feeder bus 
services by proposing a mixed integer linear programming model to optimize irregularly shaped service 
areas and transit route planning. The service area in this model is defined by the sequence of vehicle 
visits to designated pickup points (i.e., vehicle tours) in predefined blocks around the transfer station.  

 
Liang et al. (2016) and Li and Szeto (2019) proposed integer and mixed integer programming models, 
respectively, to define the service area of taxi services. Liang et al. considered a profit maximization 
design objective, while Li and Szeto considered social welfare maximization. Research on the taxi service 
region problem has used models with binary decision variables that define which nodes in a 
transportation network are within the service area (Zhou & Chow, 2021). This modeling approach is also 
present in models proposed for the optimization of congestion pricing boundaries; in these problems, 
the nodes that must be within the charging region are identified (Sumalee, 2004; Zhang & Yang, 2004). 
The cut-set heuristic proposed by Zhang and Yang (2004) for the congestion pricing problem has been 
adapted to identify optimal autonomous vehicle zones (Chen et al., 2017) and vehicle restriction areas 
(Shi et al., 2014). In contrast to these graph-based models, Bischoff et al. (2018) proposed a simulation-
based model to optimize the service areas of pooled ride-hailing operators. In their model, an initial 
service area composed of equally sized polygons is reduced (by excluding component polygons) based 
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on the simulated performance of the service. Liu and Ouyang (2021) extended this design problem to 
consider fixed transit routes; the service region of interest in this model is a square service region 
around each transit station in which last-mile services operate.  
 
The actual geometric shape of the service region is not a direct concern in the reviewed literature. In 
practice, however, the geometry of the service area can be of critical importance, as exemplified by the 
previously discussed service area regulations in the United States (Government Accountability Office, 
2012). The geometric shape of an area can also be of relevance when communicating a scheme to the 
public, as in the case of cordon or area pricing schemes (Maruyama et al., 2014; Rodriguez-Roman & 
Allahviranloo, 2019; Rodriguez-Roman & Ritchie, 2019).  
 
The topic of service area design is of practical importance. This is particularly true in the context of 
ongoing efforts to redesign bus networks and/or introduce new information technology (IT)–based 
transit services. As noted by TCRP Report 221, agencies redesigning bus networks must also consider the 
impact to their paratransit service area, and some have decided to grandfather “in either specific users 
or geographic areas to ensure continuity of paratransit service” (National Academies of Sciences, 
Engineering, and Medicine, 2021). The methods presented in this report provide agencies with 
quantitative tools to jointly make these redesign decisions. 
 
This report advances previous research by presenting new methods to solve service area design 
problems given potentially conflicting social and operational objectives. In contrast to previous work, 
coverage constraints of practical interest are incorporated in the design process. In addition, flexible 
methods for defining service areas are proposed.  
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Chapter 3. Service Area Design Problems 
 

This chapter presents two service area design problems that are special cases of the general 
optimization problem presented next. Consider a set of decision-makers interested in designing a 
service area such that a set of objectives are minimized. Let  𝑭𝑭 = �𝐹𝐹1(𝒔𝒔,𝒙𝒙),𝐹𝐹2(𝒔𝒔,𝒙𝒙), … ,𝐹𝐹𝑶𝑶(𝒔𝒔,𝒙𝒙)� be the 
set of objectives of interest, 𝒔𝒔 be the boundary of the service area, and 𝒙𝒙 represents other decision 
variables that might be connected to the design problem. Also, define 𝛀𝛀 as the set of acceptable service 
area boundaries given the spatial coverage constraints and 𝚵𝚵 as the set of values that 𝒙𝒙 can assume. The 
general design problem of interest can be formulated as: 
 

min 𝑭𝑭(𝒔𝒔,𝒙𝒙)  (1) 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡   
𝒉𝒉(𝒔𝒔,𝒙𝒙) ≤ 𝒃𝒃  (1.1) 
𝒔𝒔 ∈ 𝛀𝛀  (1.2) 
𝒙𝒙 ∈ 𝚵𝚵  (1.3) 

 
where Equation 1.1 represents a set of generic functional constraints (e.g., with 𝒃𝒃 representing 
threshold values such as a budget level). In the next subsections, the generic design problem is extended 
to consider paratransit (Section 3.1) and micromobility (Section 3.2) service area design. For illustrative 
and context purposes, specific mathematical formulations are given to the objectives considered in 
presented design models. However, the heuristics proposed to solve the design problems do not depend 
on the type of formulation used. Therefore, the optimization models and heuristics contained in this 
report can be easily adapted to other types of service area design situations.  

3.1. Paratransit Service Area Design Problem 
 
A transit agency’s budget is usually divided across the different types of operations and services that are 
designed to address different user needs. US transit agencies that operate fixed route bus services are 
required by the ADA and related regulations to also operate complementary paratransit systems that 
serve the travel needs of individuals with disabilities. A complementary paratransit system must, at a 
minimum, provide service to trips that originate and end within three-fourths of a mile on each side of 
the fixed routes that constitute the bus network (Code of Federal Regulations, 1991). Therefore, when 
an agency is designing or redesigning a fixed route network, it is also selecting the minimum paratransit 
service area (PSA) and, to a degree, implicitly deciding on the minimum demand and cost levels of that 
complementary system. Extending the PSA beyond the regulatory minimum has the positive effect of 
increasing a paratransit service’s accessibility. However, this can be economically challenging as 
paratransit costs can be significant relative to the number of trips served by these systems. Besides the 
shape of the service area, the objectives, or criteria, used in the process of designing or redesigning a 
transit service is closely regulated in the US context. Among these are Federal Transit Administration 
directives that require equity analysis for the redesign or change of transit service features to avert 
disparate impact or disproportionate burden, particularly to minorities and low-income population 
groups (FTA, 2012). Therefore, transit design methods are required to account for equity considerations.  
 
In this section, an optimization problem is proposed that can be used by transit agencies to jointly plan a 
fixed route transit network and its complementary PSA considering operational and social objectives and 
practical constraints related to the operation of these services. The problem focuses on the design of a 
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centralized service area’s PSA, in which the entire PSA is treated as a single zone as opposed to a 
decentralized PSA composed of multiple, independently managed PSAs (Shen & Quadrifoglio, 2013). 
 
Consider a transit operator that is interested in designing the layout of routes (𝑹𝑹) for a fixed route bus 
network, determining the service frequency of each route in the network (𝒇𝒇), and defining the service 
area (𝒔𝒔) for the complementary paratransit service. Assume that the design objectives of interest are to 
minimize the service ineffectiveness of the bus service (𝑀𝑀𝑏𝑏(𝑹𝑹,𝒇𝒇)), the service ineffectiveness of the 
paratransit service (𝑀𝑀𝑝𝑝(𝒔𝒔)), and a measure of inequality in access to the transit services (𝐸𝐸(𝑹𝑹,𝒇𝒇, 𝒔𝒔)), 
which is used as a proxy for the goal of increasing equity-in-access. As is standard for bus network design 
problems, assume that there is a set of design constraints 𝒉𝒉𝑹𝑹(𝑹𝑹) that control the characteristics of the 
routes in the bus network (e.g., number of routes, minimum length of a route), a set of constraints 
𝒉𝒉𝒇𝒇(𝒇𝒇) that restrain the possible values of the route service frequencies (e.g., maximum and minimum 
headway values), and that 𝒃𝒃𝑹𝑹 and 𝒃𝒃𝒇𝒇, respectively, are the threshold values for these sets of constraints. 
Additionally, let 𝛀𝛀 represent all spatial constraints that the PSA must satisfy. Define 𝐶𝐶𝑏𝑏(𝑹𝑹,𝒇𝒇) and 𝐶𝐶𝑝𝑝(𝒔𝒔) 
as the cost of operating the bus and paratransit services, respectively, and 𝐻𝐻 as the design budget. 
Given this notation, the design problem can be defined in general terms as: 

 
min 𝒁𝒁 = �𝑀𝑀𝑏𝑏(𝑹𝑹,𝒇𝒇),𝑀𝑀𝑝𝑝(𝒔𝒔),𝐸𝐸(𝑹𝑹,𝒇𝒇, 𝒔𝒔)�  (2) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡   
𝒉𝒉𝑹𝑹(𝑹𝑹) ≤ 𝒃𝒃𝑹𝑹  (2.1) 
𝒉𝒉𝒇𝒇(𝒇𝒇) ≤ 𝒃𝒃𝒇𝒇  (2.2) 

𝐶𝐶𝑏𝑏(𝑹𝑹,𝒇𝒇) + 𝐶𝐶𝑝𝑝(𝒔𝒔) ≤ 𝐻𝐻  (2.3) 
𝒔𝒔 ∈ 𝛀𝛀  (2.4) 

 
Definitions for the bus effectiveness objective 𝑀𝑀𝑏𝑏 and the sets of constraints 2.1 and 2.2 are the subject 
of many studies found in the literature. In the numerical experiments performed for this report and the 
discussion that follows, the formulation of these bus network design components is based on the work 
of Fan (2004). In practice, the specific formulation of the objective functions and constraints in design 
problem 2 would depend on a transit agency’s goals, the performance measures stemming from these 
goals, and the modeling tools available in the planning process, among other factors. 𝑀𝑀𝑏𝑏(𝑹𝑹,𝒇𝒇) could be 
used to directly account for the goal of reducing congestion or travel delays in the road network. In this 
report, it is assumed that an effective bus service will attract travelers away from the auto mode, and 
thus help reduce road congestion. However, if a more direct quantification of congestion reduction was 
desired, an additional congestion objective could be introduced to Equation 2, as discussed in Section 
3.1.3. Note that the solution approach proposed in Chapter 4 would not be significantly affected by 
introducing an additional congestion-specific objective.  
 
To ground the discussion in Section 5.1, the functions used in the simulations are discussed next. In this 
discussion, it is assumed that the design for the bus route network is performed using a discrete 
network with a set of nodes 𝑵𝑵𝒃𝒃, that demand is fixed, and that there is a single design period (e.g., peak 
hour). The demand for the paratransit system is also assumed to be fixed; trips are assumed to start and 
end in a set of zones represented by nodes 𝑵𝑵𝒑𝒑.   

3.1.1. Design Objectives for PSA Problem 
 

The bus effectiveness objective is defined as the weighted sum of the total bus user cost and the unmet 
bus demand cost. Let 𝑑𝑑𝑖𝑖𝑖𝑖  be bus travel demand from node 𝑖𝑖 to node 𝑗𝑗, 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖  be trips on route 𝑟𝑟 ∈ 𝑹𝑹𝑖𝑖𝑖𝑖 
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(where 𝑹𝑹𝑖𝑖𝑖𝑖  refers to the set of routes that connect 𝑖𝑖 and 𝑗𝑗, including routes with transfers), and 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖  be 
the corresponding travel time, which could be assumed to depend on 𝒇𝒇. Also, let 𝛿𝛿𝑖𝑖𝑖𝑖  be a binary variable 
that equals 1 if 𝑖𝑖 and 𝑗𝑗 are not connected, either directly or by transfers between routes, by 𝑹𝑹, and 0 
otherwise. The parameters 𝜔𝜔1 and 𝜔𝜔2 denote the weights of the user cost and unmet demand cost 
terms. Then, the bus effectiveness objective can be computed using: 

 

𝑀𝑀𝑏𝑏(𝑹𝑹,𝒇𝒇) = 𝜔𝜔1 � � � 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖(𝒇𝒇)
𝑟𝑟∈𝑹𝑹𝑖𝑖𝑖𝑖𝑗𝑗∈𝑵𝑵𝒃𝒃𝑖𝑖∈𝑵𝑵𝒃𝒃

+ 𝜔𝜔2 � � 𝛿𝛿𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖  
𝑗𝑗∈𝑵𝑵𝒃𝒃𝑖𝑖∈𝑵𝑵𝒃𝒃

 

 

 (3) 

The paratransit effectiveness objective used in this study accounts for the unmet paratransit demand. It 
is assumed that only trips with origins and destinations within the service area are served by the 
paratransit system. Let 𝑞𝑞𝑖𝑖𝑖𝑖 be the paratransit travel demand from node 𝑖𝑖 to node 𝑗𝑗 and 𝛾𝛾𝑖𝑖𝑖𝑖  be a binary 
variable that equals 1 if 𝑖𝑖 or 𝑗𝑗 are not within service area 𝒔𝒔, and 0 otherwise. The paratransit 
ineffectiveness objective that is minimized can be stated as: 

 

𝑀𝑀𝑝𝑝(𝒔𝒔) = � � 𝛾𝛾𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑖𝑖  
𝑗𝑗∈𝑵𝑵𝑝𝑝𝑖𝑖∈𝑵𝑵𝑝𝑝

 

 

 (4) 

The previous objective function could include terms that account for travel times and aggregate 
measures of paratransit user cost, but to include these terms would require explicit consideration of 
additional decision variables (e.g., paratransit fleet size), which is out of the scope of this report. Note 
that, in contrast to most of the flexible-route transit studies considered in the literature review, here 
space is discretized (i.e., demand originates from discrete points). However, given that the heuristic 
presented in Chapter 4 does not depend on the type of objective function formulations (e.g., the 
heuristic does not use derivatives), there is no obstacle to using a continuum approximation approach, 
like the one proposed by Rahimi et al. (2014) to specify 𝑀𝑀𝑝𝑝(𝒔𝒔).  
  
The inequality objective is defined in terms of the spatial access that different population groups have to 
the two transit services being considered. Let 𝜎𝜎𝑔𝑔𝑔𝑔 represent an aggregate measure of the level of access 
that population group 𝑔𝑔 (𝑔𝑔 ∈ 𝑮𝑮) has to mode 𝑚𝑚 (where 𝑚𝑚 ∈ 𝑴𝑴 = {bus, paratransit}). Given this 
measure, the inequality in the distribution of access levels can be quantified using an inequality index, of 
which there are several (Ramjerdi, 2006). Here, the Atkinson index (Ramjerdi, 2006) is used as the 
inequality objective:  

𝐸𝐸(𝑹𝑹,𝒇𝒇, 𝒔𝒔) = 1 − �
1

|𝑮𝑮||𝑴𝑴|� � �
𝜎𝜎𝑔𝑔𝑔𝑔(𝑹𝑹,𝒇𝒇,𝒔𝒔)

𝜎𝜎�
�
1−𝜀𝜀

𝑚𝑚∈𝑴𝑴𝑔𝑔∈𝑮𝑮

�

1
1−𝜀𝜀

 

 

 (5) 

where 𝜀𝜀 is a parameter set by the analyst that indicates the level of aversion to inequality and 𝜎𝜎� is the 
average value of the 𝜎𝜎𝑔𝑔𝑔𝑔 values. The value of 𝐸𝐸 ranges from zero (perfect equality) to one. In the 
numerical tests, 𝜎𝜎𝑔𝑔,𝑏𝑏𝑏𝑏𝑏𝑏 is computed as the proportion of the population of group 𝑔𝑔 that is within the 
coverage area of the bus service, as defined by a distance parameter from the bus routes, and 
𝜎𝜎𝑔𝑔,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  as the proportion of the population of group 𝑔𝑔 that is within the PSA.  
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3.1.2. Constraints for PSA Problem 
 
In this study, the constraint sets 2.1 and 2.2 are defined using the formulations proposed by Fan (2004) 
and are therefore omitted here for the sake of brevity. To formulate the cost of operating the bus 
service that appears in Equation 2.3, denote 𝑇𝑇𝑟𝑟 as the round-trip time of route 𝑟𝑟 and 𝑓𝑓𝑟𝑟 as the service 
frequency of route 𝑟𝑟. Also, define the number of days considered in the budget analysis as 𝜏𝜏, the 
operating hours per analysis day as 𝑂𝑂𝑏𝑏, and the cost per hour of operating a bus as 𝑐𝑐𝑏𝑏. Then, 𝐶𝐶𝑏𝑏(𝑹𝑹,𝒇𝒇) 
term can be defined as: 

 

𝐶𝐶𝑏𝑏(𝑹𝑹,𝒇𝒇) = 𝜏𝜏𝑐𝑐𝑏𝑏𝑂𝑂𝑏𝑏�𝑓𝑓𝑟𝑟𝑇𝑇𝑟𝑟
𝒓𝒓∈𝑹𝑹

 

 

 (6) 

The paratransit service cost is computed as a function of the number of paratransit trips that must be 
served by the system. Defining 𝑐𝑐𝑝𝑝 as the cost per paratransit trip, the 𝐶𝐶𝑝𝑝(𝒔𝒔) is computed by: 

 

𝐶𝐶𝑝𝑝(𝒔𝒔)  = 𝑐𝑐𝑝𝑝 � � (1 − 𝛾𝛾𝑖𝑖𝑖𝑖)𝑞𝑞𝑖𝑖𝑖𝑖 
𝑗𝑗∈𝑵𝑵𝒑𝒑𝑖𝑖∈𝑵𝑵𝒑𝒑

 

 

 (7) 

In the numerical tests, Equation 2.4 will be specified to reflect the minimum PSA coverage regulation in 
the United States, but naturally it could be used to reflect other types of spatial considerations. Let 
𝐵𝐵(𝑹𝑹,Δ𝑚𝑚𝑚𝑚𝑚𝑚) ∈ 𝛀𝛀 represent the paratransit service space within the minimum regulatory distance 
Δ𝑚𝑚𝑚𝑚𝑚𝑚 of all the routes that compose 𝑹𝑹; that is, 𝐵𝐵(𝑹𝑹,Δ𝑚𝑚𝑚𝑚𝑚𝑚) is a buffer, in geographic information systems 
(GIS) terminology, and 𝐵𝐵(∙) is the buffer function that generates the space. Using this space object, 
constraint 2.4 can be operationalized by: 

 
𝒔𝒔 ∩ 𝐵𝐵(𝑹𝑹,Δ𝑚𝑚𝑚𝑚𝑚𝑚) = 𝐵𝐵(𝑹𝑹,Δ𝑚𝑚𝑚𝑚𝑚𝑚) 

 
 (8) 

Equation 8 states that the spatial intersection between 𝒔𝒔 and 𝐵𝐵(𝑹𝑹,Δ𝑚𝑚𝑚𝑚𝑚𝑚) must equal 𝐵𝐵(𝑹𝑹,Δ𝑚𝑚𝑚𝑚𝑚𝑚); that is 
𝒔𝒔 must contain the minimum PSA set by regulations for 𝑹𝑹. In Figure 1, the concept of the 𝐵𝐵(𝑹𝑹,Δ𝑚𝑚𝑚𝑚𝑚𝑚) 
buffer space (the minimum PSA) for a bus route is illustrated, along with a PSA that satisfies constraint 
(8) as it contains in its entirety the minimum PSA. Note that mathematically the 𝒔𝒔 can be treated as a 
polygon (as it will be done in the solution approach discussed in Chapter 4) and that by extension the 
function 𝐵𝐵 produces buffer polygons.  

 

 

 
Figure 1. Example of PSA polygons. 
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3.1.3. Models Systems for Direct Computation of Congestion Reduction Objectives 
 
In practice, transportation planners use regional travel demand models to forecast the impacts of new 
transit service configurations on all components of the transportation network, including impacts on 
vehicle traffic that uses the road network. These computer-based model systems are usually sequential 
trip-based models, such as four-step models, or to a lesser extent, activity-based models. The heuristic 
presented in Chapter 4 can interact with these models as if they were black-box computer models that 
receive as input the tuple (𝑹𝑹,𝒇𝒇, 𝒔𝒔), plus the additional transportation network and sociodemographic 
data, and return as output standard travel estimates such as the travel time (𝑡𝑡𝑎𝑎) and vehicle flow (𝑥𝑥𝑎𝑎) 
on road network link 𝑎𝑎 ∈ 𝐴𝐴. These outputs could be used to compute congestion reduction objectives 
such as minimizing total vehicle travel time in the road network (i.e., ∑ 𝑥𝑥𝑖𝑖𝑡𝑡𝑖𝑖𝑎𝑎∈𝐴𝐴 ). These modeling 
considerations were not incorporated in the numerical tests and sample applications reported in 
Chapter 5 given the high computation cost (i.e., computer model run times) that would result from 
modeling auto travel demand. However, a modeler could easily include an additional congestion 
objective as part of design problem 2 and use the proposed heuristic to find solutions to the expanded 
problem.  

3.2. Dockless Micromobility Service Area Design Problem 
 
As in the PSA design problem, the micromobility service area (MSA) design problem is formulated as a 
multi-objective problem with constraints. Assume that the MSA is collaboratively designed by a dockless 
micromobility service operator and city planners. The service operator’s goal is to maximize profit, while 
the city planners’ goals are to reduce congestion and ensure equitable access to the micromobility 
service. The goal of ensuring equitable access is operationalized in the form of a spatial coverage 
constraint: a set of city zones that must be included in the final MSA design is defined. These zones 
could represent, for example, areas where the residences of historically disadvantaged populations 
concentrate. Let 𝑀𝑀𝑜𝑜(𝒔𝒔) be the operator’s objective, 𝑀𝑀𝑐𝑐(𝒔𝒔) denote the city’s objectives, and 𝚿𝚿 represent 
the set of zones that must be included in the MSA. The MSA design problem can be formulated as: 
 

min 𝒁𝒁 = (𝑀𝑀𝑜𝑜(𝒔𝒔),𝑀𝑀𝑐𝑐(𝒔𝒔))  (9) 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡   
𝒔𝒔 ∩ 𝚿𝚿 = 𝚿𝚿  (9.1) 

 

3.2.1. Design Objectives for the MSA Problem 
 
Given the relative novelty of micromobility services, there are no standard approaches to simulate the 
demand for micromobility and, therefore, to compute the 𝑀𝑀𝑜𝑜(𝒔𝒔) and 𝑀𝑀𝑜𝑜(𝒔𝒔) objectives. A promising 
alternative is to model micromobility demand using an activity-based travel demand model, as in the 
work of Rodriguez-Roman et al. (2021). A challenge with activity-based models is that they are relatively 
computationally expensive, which limits the number of design evaluations that could be performed in 
the process of finding good MSA alternatives. For simplicity, it is assumed in the simulation experiments 
that the decision-makers have access to simple-to-evaluate models (i.e., surrogate models (Forrester & 
Keane, 2009)) that can provide good estimates of the objective function values. 
 
In the simulation experiments for the MSA problem (Section 5.2), 𝑀𝑀𝑜𝑜(𝒔𝒔) is defined as the total number 
of micromobility trips per unit area of the MSA (e.g., number of trips per km2 of service area) and it is 
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assumed that the operator is interested in maximizing this metric, which serves as a simple proxy for 
profit. The 𝑀𝑀𝑐𝑐(𝒔𝒔) objective is defined as the total number of car trips reduced per unit area of the MSA. 
Note that an MSA with a large extension would require more resources to, for example, search for and 
relocate the vehicles as they spread and concentrate in suboptimal locations in the service area. Given 
that Equation 9 and its heuristic assume that the objectives will be minimized, the reciprocal of the 
previously discussed objectives was used in simulation experiments. As before, these objective function 
specifications are only examples; the heuristics presented in Chapter 4 do not depend on these 
assumptions. 
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Chapter 4. Solution Approach 
 
In this section, solution approaches are presented for the PSA and MSA design problems. The heuristic 
for the PSA problem includes procedures to search for designs for the fixed route network. Naturally, 
these procedures are not relevant for the MSA design problem. However, in both heuristics the service 
area 𝒔𝒔 is treated as a polygon and the same strategies are used to iteratively evolve a set of candidate 
design solutions (or population, in genetic algorithm terminology).   

4.1. Heuristic for PSA Problem 
 
The proposed PSA design model is a multi-objective, non-linear mixed integer optimization problem 
with constraints. A GA-based solution approach is proposed to search for solutions to the proposed 
problem. The main steps of the heuristic are illustrated in Figure 2. The heuristic consists of two main 
steps: (i) a bus network design procedure (BNDP) that generates bus networks, their minimum PSA, and 
the route frequencies, and (ii) a GA procedure to search for paratransit service area improvements 
(GA-PSA). Several procedures can be found in the literature to generate bus networks, determine route 
frequencies, and select the best set of solutions in multi-objective problems (Gunantara, 2018; Ibarra-
Rojas et al., 2015). As the focus of this report is not on developing new methods for these tasks, existing 
methods were used in the simulation tests for generating bus networks, setting route frequencies, and 
selecting the best set of solutions in multi-objective problems. The general solution framework does not 
depend on the methods used to accomplish these specific tasks. In the following sections, the notation 
and steps of the solution approach are presented. 

 

 
 

Figure 2. Main steps of the solution method. 
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Notation  
 

Counters and Indices 
𝑛𝑛 : iteration counter  
𝑘𝑘 : candidate design index in BNDP 
𝑢𝑢 : candidate design index in GA-PSA 
𝜄𝜄 : grid column index 
𝑎𝑎 : index designs produced by BNDP and improved by GA-PSA 

 
Parameters 

𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 : BNDP’s maximum number of iterations   
𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝 : GA-PSA’s maximum number of iterations  
𝜂𝜂𝑏𝑏 : population size of BNDP  
𝜂𝜂𝑝𝑝 : number of BNDP solutions to be improved by GA-PSA 
𝜂𝜂𝑠𝑠 : PSA population size in GA-PSA 
𝜂𝜂𝐼𝐼𝐼𝐼 : initial population size in GA-PSA 
𝜂𝜂𝑔𝑔𝑔𝑔 : number of grip points 

𝜂𝜂𝑚𝑚1,𝜂𝜂𝑚𝑚2 : lower and upper bound on the number of vertices to include in mutation segment 
𝛼𝛼𝑔𝑔 : perpendicular distance of grid used in crossover operation 
𝐻𝐻 : budget 

Δ𝑚𝑚𝑚𝑚𝑚𝑚,Δ𝑚𝑚𝑚𝑚𝑚𝑚 :  minimum and minimum buffer distance, respectively 
𝜉𝜉 : buffer increment 
𝜌𝜌𝑐𝑐 : probability of a crossover operation 
𝜌𝜌𝑐𝑐𝑐𝑐 : probability of a mutation operation given that a crossover operation occurred 
𝜌𝜌𝑒𝑒 : probability of expansion in mutation operation 
𝜌𝜌𝑣𝑣 : probability that a new vertex is created 

𝜃𝜃1,𝜃𝜃2 : randomly generated angles that define the swapped segments in crossover 
operation 

𝜍𝜍 : angle increment in crossover operation 
𝑙𝑙𝑢𝑢 :  perimeter of a polygon 𝑢𝑢 

𝑣𝑣1,𝑣𝑣2 : randomly generated vertex indices 
𝜷𝜷,̈ 𝜷𝜷1,𝜷𝜷2 : randomly generated vertex based on grid vertices 𝜷𝜷1 and 𝜷𝜷2 

𝑤𝑤 : random number in the interval [0,1] 
 

Decision Variables 
𝑹𝑹 : bus route networks 
𝒇𝒇 : service route frequencies  
𝒔𝒔 : PSA polygon for network  

 
Sets 

𝚾𝚾�,𝚾𝚾, 𝛘𝛘𝑛𝑛 : contains decision variable values for all evaluated designs, the best-known 
designs, and the designs generated in iteration 𝑛𝑛, respectively  

𝚲𝚲�,𝚲𝚲,𝚲𝚲�,𝛌𝛌𝑛𝑛 : objective function values for all evaluated designs, the best-known designs, all 
designs generated by GA-PSA, and the designs generated in iteration 𝑛𝑛, 
respectively 
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𝚽𝚽� ,𝚽𝚽,𝚽𝚽� ,𝝓𝝓𝑛𝑛 : remaining budget values for all evaluated designs, the best-known designs, all 
designs generated by GA-PSA, and the designs generated in iteration 𝑛𝑛, 
respectively 

𝑷𝑷� ,𝑷𝑷,𝑷𝑷𝑛𝑛 : contains all polygons, the best polygons, and the polygons generated in iteration 
𝑛𝑛, respectively  

𝒗𝒗 : vertex index set for a polygon 
𝒑𝒑𝑢𝑢, 𝒑̇𝒑𝑢𝑢, 𝒑̈𝒑𝑢𝑢 : vertex set for polygon, a subset (𝒑̇𝒑𝑢𝑢 ⊆ 𝒑𝒑𝑢𝑢), and a set of new vertices 

𝑨𝑨 : indices of the 𝜂𝜂𝑝𝑝-best designs 
 

Functions 
𝐵𝐵 : buffer function 

𝑀𝑀𝑏𝑏 ,𝑀𝑀𝑝𝑝 : bus and paratransit effectiveness objectives, respectively 
𝐸𝐸 : equity objective 

𝐶𝐶𝑏𝑏 ,𝐶𝐶𝑝𝑝 :  bus and paratransit service cost, respectively 
 

4.1.1. Main Steps of Integrated Fixed Transit – PSA Design Approach 
 
The general steps of the proposed procedure are described next. The specific methods used in the 
numerical tests of this study can be found in Chapter 5. The structure of the solution approach assumes 
that an algorithm that works on iteratively optimizing a population of solutions (i.e., designs) is being 
used. In the numerical tests performed in this study, a GA based on the work by Fan (2004) was used.  

 
Steps 
 

1. Initialization: Read initial model inputs, including demand data and transit operational 
parameters, and set values for algorithmic parameters (e.g., maximum number of iterations). 

2. BNDP:  
2.1. Set 𝑛𝑛 ≔ 0 and initiate  𝚾𝚾�,𝚲𝚲�,𝚽𝚽� ,𝚾𝚾,𝚲𝚲,𝚽𝚽, 𝛘𝛘𝑛𝑛, 𝛌𝛌𝑛𝑛, and 𝝓𝝓𝑛𝑛 as empty sets.  
2.2. Generate initial set of candidate bus network designs 𝑹𝑹𝑛𝑛 using initial bus network generation 

procedure.  
2.3. For each candidate design 𝑘𝑘 with bus network 𝑹𝑹𝑘𝑘 ∈ 𝑹𝑹𝑛𝑛: 
2.3.1. Determine 𝒔𝒔𝑘𝑘 = 𝐵𝐵(𝑹𝑹𝑘𝑘 ,Δ𝑚𝑚𝑚𝑚𝑚𝑚) and the corresponding paratransit values 𝑀𝑀𝑝𝑝(𝒔𝒔𝑘𝑘) and 𝐶𝐶𝑝𝑝(𝒔𝒔𝑘𝑘). 
2.3.2. Compute remaining budget: 𝐻𝐻 − 𝐶𝐶𝑝𝑝(𝒔𝒔𝑘𝑘). 
2.3.3. Given remaining budget, determine 𝒇𝒇𝑘𝑘 using route frequency setting procedure. Typically, the 

bus system objective 𝑀𝑀𝑏𝑏(𝑹𝑹𝑘𝑘,𝒇𝒇𝑘𝑘) and the cost 𝐶𝐶𝑏𝑏(𝑹𝑹𝑘𝑘,𝒇𝒇𝑘𝑘) can be computed at this stage. 
2.3.4. Compute remaining budget: 𝐻𝐻 − 𝐶𝐶𝑝𝑝(𝒔𝒔𝑘𝑘)− 𝐶𝐶𝑏𝑏(𝑹𝑹𝑘𝑘,𝒇𝒇𝑘𝑘). 
2.3.5. Compute equity objective 𝐸𝐸(𝑹𝑹𝑘𝑘 ,𝒇𝒇𝑘𝑘 , 𝒔𝒔𝑘𝑘).  
2.3.6. Store (𝑹𝑹𝑘𝑘 ,𝒇𝒇𝑘𝑘, 𝒔𝒔𝑘𝑘) in 𝛘𝛘𝑛𝑛 and 𝚾𝚾�, �𝑀𝑀𝑏𝑏(𝑹𝑹𝑘𝑘,𝒇𝒇𝒌𝒌),𝑀𝑀𝑝𝑝(𝒔𝒔𝑘𝑘),𝐸𝐸(𝑹𝑹𝒌𝒌,𝒇𝒇𝒌𝒌, 𝒔𝒔𝒌𝒌)� in 𝛌𝛌𝑛𝑛 and 𝚲𝚲�, and the 

remaining budget information in 𝝓𝝓𝑛𝑛 and  𝚽𝚽� . 
2.4. If 𝑛𝑛 > 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 continue to step 3; otherwise, continue to step 2.5. 
2.5. Select set of 𝜂𝜂𝑏𝑏 best-known solutions: Based on a solution quality criterion, pick the 𝜂𝜂𝑏𝑏 best 

designs from the set 𝛘𝛘𝑛𝑛 ∪ 𝚾𝚾 given 𝛌𝛌𝑛𝑛 ∪ 𝚲𝚲 and 𝝓𝝓𝑛𝑛 ∪𝚽𝚽 (for example, in the numerical tests 
performed in this study, the Pareto ranking and crowding distance procedure proposed by Deb 
et al. [2002] was applied to compute the solution quality criterion). Reset 𝚾𝚾,𝚲𝚲, and 𝚽𝚽 to contain 
the corresponding values of the 𝜂𝜂𝑏𝑏 best designs. Set 𝛘𝛘𝑛𝑛,𝛌𝛌𝑛𝑛 and 𝝓𝝓𝑛𝑛 to be empty sets.  
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2.6. Set 𝑛𝑛 ≔ 𝑛𝑛 + 1. 
2.7. Based on the information in 𝚾𝚾, generate 𝜂𝜂𝑏𝑏 new bus network designs using existing procedures 

(e.g., [Fan, 2004]) and store them in 𝑹𝑹𝑛𝑛, and return to step 2.3. 
3. Select set of 𝜂𝜂𝑝𝑝 best-known solutions: Based on a solution quality criterion, pick the 𝜂𝜂𝑝𝑝 best 

designs from the set 𝚾𝚾� given 𝚲𝚲� and 𝚽𝚽� . 
4. Search for PSA improvements: The GA-PSA is applied to the 𝜂𝜂𝑝𝑝 best-known solutions (see next 

subsection for description). This procedure adds new designs to 𝚾𝚾�, along with corresponding 
values to 𝚲𝚲� and 𝚽𝚽� . 

5. Return set of non-dominated 𝚾𝚾� designs given 𝚲𝚲� and 𝚽𝚽� .  
 

4.1.2. Genetic Algorithm for PSA Design Problem 
 
GA-PSA is applied to search for improvements to the minimum PSAs of the 𝜂𝜂𝑝𝑝 best designs identified by 
the BNDP. The search for better PSA designs occurs, independently, for each of the 𝜂𝜂𝑝𝑝 best designs; let 
𝑨𝑨 be a set that contains the indices of the 𝜂𝜂𝑝𝑝 best designs and 𝑎𝑎 ∈ 𝑨𝑨. In GA-PSA, a service area is 
represented as a polygon. Let 𝑆𝑆 be a simple polygon generating function and 𝒑𝒑 be geometric 
information used by 𝑆𝑆 to generate the polygon. Then, a service area is generated by 𝒔𝒔 = 𝑆𝑆(𝒑𝒑). In this 
study, 𝒑𝒑 is specified as an ordered vertex set, which is connected by 𝑆𝑆 via straight lines that define the 
polygon edges. An alternative to the approach used here is to define 𝒑𝒑 as the set of control vertices that 
determine the shapes of spline curves generated by 𝑆𝑆. The spline curve approach was not used in this 
study as initial tests suggested that spline curves are more computationally expensive than the 
parsimonious PSA polygon representation selected here. Three PSA generation procedures are 
described in this section: the procedure to generate an initial set of PSA expansions, and the crossover 
and mutation operators that modify the population of PSA designs. After these procedures are 
described, the main steps of GA-PSA are presented.  

 
4.1.2.1. Initial Population Generation Procedure for PSA Problem 
 
The initial population generation procedure (IP-PSA) uses the buffer function to generate an initial set 𝑷𝑷 
of PSA designs (i.e., the population). Let Δ𝑚𝑚𝑚𝑚𝑚𝑚 denote the maximum buffer distance from bus routes, 𝜉𝜉 a 
distance interval, and 𝜂𝜂𝐼𝐼𝐼𝐼 the initial population size. For each value 𝑢𝑢 in {1, … , 𝜂𝜂𝐼𝐼𝐼𝐼}, a candidate PSA 
design is generated using 𝒔𝒔𝑢𝑢 = 𝐵𝐵(𝑹𝑹𝑎𝑎 ,Δ𝑢𝑢) and added to 𝑷𝑷. In this process, the value of  Δ𝑢𝑢 begins at 
Δ𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜉𝜉 and it iteratively increases until Δ𝑚𝑚𝑚𝑚𝑚𝑚, with increments of 𝜉𝜉; the value of 𝜉𝜉 is determined such 
that 𝜂𝜂𝐼𝐼𝐼𝐼 values are ultimately generated. 

 
4.1.2.2. Crossover and Mutation Procedures 
 
GA-PSA uses crossover and mutation procedures to iteratively generate new solutions based on the 
population of solutions in 𝑷𝑷. With probability 𝜌𝜌𝑐𝑐, in each iteration of GA-PSA, the crossover operation is 
performed, and with probability 1 − 𝜌𝜌𝑐𝑐, only the mutation operation is performed. If the crossover 
operation is performed, the PSA designs generated by it are modified by the mutation operation with 
probability 𝜌𝜌𝑐𝑐𝑐𝑐.  An illustration of the crossover operations in presented in Figure 3. In the crossover 
operation, two distinct 𝒔𝒔𝑢𝑢1 and 𝒔𝒔𝑢𝑢2 designs are randomly selected from 𝑷𝑷 and contiguous subsets of 
vertices are swapped between these two parent solutions. To identify the vertex subsets to be swapped, 
a reference point is first defined by finding the centroid of the spatial intersection 𝒔𝒔𝑢𝑢1 ∩ 𝒔𝒔𝑢𝑢2. Second, an 
angle 𝜃𝜃1 is randomly generated in the interval [0,2𝜋𝜋], after which a second angle 𝜃𝜃2 is randomly 
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generated in the interval [𝜃𝜃1,𝜃𝜃1 + 𝜍𝜍], where 𝜍𝜍 is an angle increment. Third, assuming the reference 
point as the origin of the coordinate system, the angle with respect to the X-axis is measured for each 
vertex in 𝒔𝒔𝑢𝑢1 and 𝒔𝒔𝑢𝑢2. Finally, for each parent 𝒔𝒔𝑢𝑢1 and 𝒔𝒔𝑢𝑢2, the vertex with an angle nearest to 𝜃𝜃1 and 
the vertex with an angle nearest to 𝜃𝜃2 are selected as the starting and ending vertices in the ordered 
subset of vertices to be swapped between parents, and the subsets are swapped to create new offspring 
solutions. In Figure 3, the dash lines represent the (𝜃𝜃1,𝜃𝜃2) angles that are used to select the vertex 
subset that is swapped from polygon (b) to polygon (a) to generate the new polygon (c). 

 

 
Figure 3. Vertices of two polygons, (a) and (b), swapped to create a new PSA polygon, (c). 

 
The mutation operation either expands or contracts segments of a PSA boundary. For each segment to 
be modified, a squared grid of points is generated. The points are used to identify the space outside and 
inside the 𝒔𝒔𝑢𝑢 and guide the expansion or contraction of the boundary. Figure 4 illustrates the procedure 
described next. Let 𝒑𝒑𝑢𝑢 be the vertex set of the 𝒔𝒔𝑢𝑢 polygon and define the corresponding set of vertex 
indices as 𝒗𝒗 = {1, … , |𝒑𝒑𝑢𝑢|}. The first step of the mutation operation consists of selecting the segment to 
modify. A segment is a subset 𝒑̇𝒑𝑢𝑢 ⊆ 𝒑𝒑𝑢𝑢 of contiguous vertices. 𝒑̇𝒑𝑢𝑢’s starting vertex 𝑣𝑣1 is randomly 
selected from set 𝒗𝒗 by computing the length 𝑙𝑙𝑢𝑢 of the 𝒔𝒔𝑢𝑢 perimeter, generating a random number in the 
interval [0, 𝑙𝑙𝑢𝑢], and finding the vertex whose distance to the first vertex in 𝒑𝒑𝑢𝑢 is closest to the random 
number. The final vertex in the ordered subset 𝒑̇𝒑𝑢𝑢is defined as 𝑣𝑣2 = 𝑣𝑣1 + ℓ, where ℓ is a randomly 
generated integer in the range [𝜂𝜂𝑚𝑚1,𝜂𝜂𝑚𝑚2 ]. The value of [𝜂𝜂𝑚𝑚1,𝜂𝜂𝑚𝑚2 ] can be determined, for example, so 
that a percentage range of the vertices in 𝒑𝒑𝑢𝑢 are part of the mutated segment. If 𝑣𝑣2 > |𝒑𝒑𝑢𝑢|, then 𝑣𝑣2: =
𝑣𝑣2 − |𝒑𝒑𝑢𝑢|; in this case 𝒑̇𝒑𝑢𝑢  contains all vertices from 𝑣𝑣1 to |𝒑𝒑𝑢𝑢| and from 𝒑𝒑𝑢𝑢’s initial vertex to 𝑣𝑣2. 
 
The second step of the mutation process is to generate a grid of 𝜂𝜂𝑔𝑔𝑔𝑔 with equally spaced points that 
extend perpendicularly for a distance 𝛼𝛼𝑔𝑔 from both sides of the line that connects vertices 𝑣𝑣1 and 𝑣𝑣2. A 
point-in-polygon algorithm is then applied to define which grid points are inside and outside of 𝒔𝒔𝑢𝑢. With 
probability 𝜌𝜌𝑒𝑒, the boundary is expanded based on the information of the points outside 𝒔𝒔𝑢𝑢, and with 
probability 1 − 𝜌𝜌𝑒𝑒, the boundary is contracted using the points inside 𝒔𝒔𝑢𝑢. For every grid column 𝜄𝜄 ∈ 𝑰𝑰, a 
new boundary vertex is created with probability 𝜌𝜌𝑣𝑣. A new vertex 𝜷̈𝜷𝜄𝜄 = [𝑥𝑥𝜄𝜄,𝑦𝑦𝜄𝜄] is created using the 
expression 𝜷̈𝜷𝜄𝜄 = 𝜷𝜷1𝜄𝜄 + 𝑤𝑤 × (𝜷𝜷2𝜄𝜄 − 𝜷𝜷1𝜄𝜄) and stored in 𝒑̈𝒑𝑢𝑢. 𝜷𝜷1𝜄𝜄, and 𝜷𝜷2𝜄𝜄 (𝜷𝜷2𝜄𝜄 ≻ 𝜷𝜷1𝜄𝜄) are the extreme 
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points (lowest and highest order points) that satisfy the mutation condition (expansion or contraction) 
of interest in the column 𝜄𝜄, and 𝑤𝑤 is a random number in the interval [0,1]. The new vertices in set 𝒑̈𝒑𝑢𝑢 
are embedded in 𝒑𝒑𝑢𝑢 in replacement of the vertices in 𝒑̇𝒑𝑢𝑢.  
 

 
4.1.2.3. Steps of GA-PSA 

 
4. For each 𝑎𝑎 ∈ 𝑨𝑨: 
4.1. Set 𝑛𝑛 ≔ 0 and initiate  𝑷𝑷� ,𝑷𝑷,𝚲𝚲�,𝚲𝚲,𝚽𝚽� ,𝚽𝚽,  𝛌𝛌𝑛𝑛, and 𝝓𝝓𝑛𝑛 as empty sets.  
4.2. Generate initial population 𝑷𝑷𝑛𝑛 using IP-PSA. Store 𝑷𝑷𝑛𝑛 in 𝑷𝑷�. 
4.3. For each candidate design 𝒔𝒔𝑢𝑢 ∈ 𝑷𝑷𝑛𝑛: 
4.3.1. Compute 𝑀𝑀𝑝𝑝(𝒔𝒔𝑢𝑢), 𝐶𝐶𝑝𝑝(𝒔𝒔𝑢𝑢), and 𝐸𝐸(𝑹𝑹𝒂𝒂,𝒇𝒇𝑎𝑎 , 𝒔𝒔𝑢𝑢)  
4.3.2. Compute remaining budget: 𝐻𝐻 − 𝐶𝐶𝑝𝑝(𝒔𝒔𝑢𝑢)− 𝐶𝐶𝑏𝑏(𝑹𝑹𝒂𝒂,𝒇𝒇𝑎𝑎) 

4.3.3. Store �𝑀𝑀𝑝𝑝(𝒔𝒔𝑢𝑢),𝐸𝐸(𝑹𝑹𝑎𝑎 ,𝒇𝒇𝑎𝑎 , 𝒔𝒔𝑢𝑢)� in 𝛌𝛌𝑛𝑛 and 𝚲𝚲�, and the remaining budget in 𝝓𝝓𝑛𝑛 and 𝚽𝚽� . 
4.4. If 𝑛𝑛 > 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝, continue to step 4.9; otherwise, continue to step 4.5. 
4.5. At most, select set of 𝜂𝜂𝑠𝑠 best-known solutions: Based on a solution quality criterion, select, at 

most, the 𝜂𝜂𝑠𝑠 best designs from the set 𝑷𝑷𝒏𝒏 ∪ 𝑷𝑷 given 𝛌𝛌𝑛𝑛 ∪ 𝚲𝚲 and 𝝓𝝓𝑛𝑛 ∪𝚽𝚽. Reset 𝑷𝑷,𝚲𝚲, and 𝚽𝚽 to 
contain values corresponding of the 𝜂𝜂𝑠𝑠 best designs. Set 𝑷𝑷𝑛𝑛,𝛌𝛌𝑛𝑛 and 𝝓𝝓𝑛𝑛 to be empty sets. 

4.6. Set 𝑛𝑛 ≔ 𝑛𝑛 + 1. 
4.7. Based on the designs in 𝑷𝑷, use the PSA crossover and mutation operators to generate 𝜂𝜂𝑠𝑠  new 

designs, and store the designs in 𝑷𝑷𝑛𝑛. 
4.8. Remove from 𝑷𝑷𝑛𝑛 all 𝒔𝒔𝑢𝑢 that are not simple polygons or that do not satisfy Equation 8. Store 

remaining designs in 𝑷𝑷� and return to step 4.3. 
4.9. Find the set of non-dominated designs in 𝑷𝑷� given 𝚲𝚲� and 𝚽𝚽�  and add their information to 𝚾𝚾�, 𝚲𝚲�, 

and 𝚽𝚽� . The 𝑹𝑹𝑎𝑎, 𝒇𝒇𝑎𝑎, and 𝑴𝑴𝑏𝑏(𝑹𝑹𝑎𝑎,𝒇𝒇𝑎𝑎) information is appended to the new designs before adding 
their information to the sets. 

 
The discussion so far has assumed that the PSA is a simple polygon, that is, a polygon that has no holes 
and whose edges do not intersect. However, it is possible for a buffer polygon to have holes (i.e., areas 
surrounded by the PSA boundary but not inside it). If an agency wants to allow the possibility for service 

Figure 4. Example of PSA boundary expansion using the grid-based mutation operation. 
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holes, the proposed procedures can be applied for each of the vertex sets that define the holes. In the 
experiments discussed in Chapter 5, only simple polygons are considered. 

4.2. Heuristic for MSA Design Problem 
 
The heuristic for the micromobility service area design problem (GA-MSA) has the same geometric 
representation of service area boundaries and the same steps of the GA-PSA heuristic. The main 
difference between the GA-PSA and GA-MSA is the procedure used to generate the initial population of 
candidate solutions. This procedure is explained next, and for the sake of completeness, the notation 
used in the discussion and the steps of the GA-MSA heuristic are also presented.  
 
Notation  

 
Counters and Indices 

𝑛𝑛 : iteration counter  
𝑢𝑢 : candidate design index in GA-MSA 

 
Parameters 

𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 : GA-MSA’s maximum number of iterations  
𝜂𝜂𝐼𝐼𝐼𝐼 : initial population size per IP-MSA procedure 
𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝 : population size in GA-MSA 
𝛼𝛼𝑏𝑏 : side length for box polygons that define random zones 
𝜂𝜂𝑟𝑟 : maximum number of random zones that can be generated 

 
Decision Variable 

𝒔𝒔 : MSA polygon  
 

Sets 
𝚲𝚲,𝚲𝚲�,𝛌𝛌𝑛𝑛 : objective function values for the best-known designs, all designs generated by 

GA-MSA, and the designs generated in iteration 𝑛𝑛, respectively 
𝑷𝑷� ,𝑷𝑷,𝑷𝑷𝑛𝑛 : contains all polygons, the best polygons, and the polygons generated in iteration 

𝑛𝑛, respectively  
 

Functions 
𝑀𝑀𝑏𝑏 ,𝑀𝑀𝑝𝑝 : objectives of the operator and the city, respectively 

 

4.2.1. Initial Population Generation Procedure for MSA Problem 
 
The initial population generation procedure (IP-MSA) uses the convex hull operator to create polygons 
that contain the city zones that must be included in the MSA (i.e., the 𝚿𝚿 set). Generally speaking, a 
convex hull is the intersection of all convex sets containing a set of points (Weisstein, n.d.). In the 
context of the MSA problem, the points can be the vertices of the polygons representing the 𝚿𝚿 city 
zones. The convex hull operator returns a set of points that can be used to create a polygon that, at a 
minimum, contains the 𝚿𝚿 city zones. Figure 5 illustrates the concept of a convex hull.  
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Figure 5. Set of points representing city zones (a) and their convex hull polygon (b). 

 
Two procedures are used to generate the initial population using the convex hull operator. In the first 
procedure, a base convex hull polygon that contains the 𝚿𝚿 city zones is generated. Then, 𝜂𝜂𝐼𝐼𝐼𝐼  feasible 
solutions are generated by applying the mutation procedure described in Section 4.1.2.2 to the base 
polygon 𝜂𝜂𝐼𝐼𝐼𝐼 times. Recall that a feasible service area polygon must entirely contain the 𝚿𝚿 city zones and 
be a simple polygon; mutated polygons that are infeasible are replaced by new ones until 𝜂𝜂𝐼𝐼𝐼𝐼 feasible 
solutions are identified. The second procedure iteratively uses the convex hull operator to create 
polygons that contain the 𝚿𝚿 city zones and randomly generated zones. In each iteration of this 
procedure: 
 

i. One to 𝜂𝜂𝑟𝑟 points are randomly generated in the study region space.  
ii. For each randomly generated point, a box zone is created by generating the vertices for a box 

polygon with side length of 𝛼𝛼𝑏𝑏 and a center located at the random point. 
iii. The convex hull operator is used to generate a polygon that contains the 𝚿𝚿 city zones and 

randomly generated zones created in step ii.  
 

𝜂𝜂𝐼𝐼𝐼𝐼  feasible solutions are also generated by applying the second IP-MSA procedure.  

4.2.2. Genetic Algorithm for MSA Design Problem 
 
The steps of the GA-MSA are: 
 

1. Set 𝑛𝑛 ≔ 0 and initiate  𝑷𝑷� ,𝑷𝑷,𝚲𝚲�,𝚲𝚲,𝚽𝚽� ,𝚽𝚽,  𝛌𝛌𝑛𝑛, and 𝝓𝝓𝑛𝑛 as empty sets.  
2. Generate initial population 𝑷𝑷𝑛𝑛 using IP-MSA. Store 𝑷𝑷𝑛𝑛 in 𝑷𝑷�. 
3. For each candidate design 𝒔𝒔𝑢𝑢 ∈ 𝑷𝑷𝑛𝑛: 
3.1. Compute 𝑀𝑀𝑜𝑜(𝒔𝒔𝑢𝑢) and 𝑀𝑀𝑐𝑐(𝒔𝒔𝑢𝑢) 
3.2. Store �𝑀𝑀𝑜𝑜(𝒔𝒔𝑢𝑢),𝑀𝑀𝑐𝑐(𝒔𝒔𝑢𝑢)� in 𝛌𝛌𝑛𝑛 and 𝚲𝚲�. 
4. If 𝑛𝑛 > 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 continue to step 9; otherwise, continue to step 5. 
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5. At most, select set of 𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝 best-known solutions: Based on a solution quality criterion, select, at 
most, the 𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝 best designs from the set 𝑷𝑷𝒏𝒏 ∪ 𝑷𝑷 given 𝛌𝛌𝑛𝑛 ∪ 𝚲𝚲. Reset 𝑷𝑷 and 𝚲𝚲 to contain values 
corresponding of the 𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝 best designs. Set 𝑷𝑷𝑛𝑛 and 𝛌𝛌𝑛𝑛 to be empty sets. 

6. Set 𝑛𝑛 ≔ 𝑛𝑛 + 1. 
7. Based on the designs in 𝑷𝑷, use the crossover and mutation operators (see Section 4.1.2.2) to 

generate 𝜂𝜂𝐼𝐼𝐼𝐼  new designs, and store the designs in 𝑷𝑷𝑛𝑛. 
8. Remove from 𝑷𝑷𝑛𝑛 all 𝒔𝒔𝑢𝑢 that are not simple polygons or that do not completely contain the 𝚿𝚿 city 

zones. Store remaining designs in 𝑷𝑷� and return to step 3. 
9. Find and return the set of non-dominated designs in 𝑷𝑷� given 𝚲𝚲�, along with the respective 

objective function values. 
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Chapter 5. Numerical Tests  
Numerical tests were performed to illustrate the application of the proposed design models and their 
heuristics. Sections 5.1. and 5.2. present the experiments performed for the PSA design problem and 
MSA design problem, respectively.   

5.1. Numerical Experiments for PSA Design Problem 
The GA-PSA experiments explored the impact that the 𝜌𝜌𝑐𝑐 (crossover probability) and 𝜌𝜌𝑐𝑐𝑐𝑐 (crossover-
and-mutation probability) parameters have on the rate at which the dominated objective function space 
expands with each evaluation of the candidate designs generated by GA-PSA (the objective function 
space is three-dimensional as three objective functions are considered). The application setting, the 
demand and operational models, key parameter values, and the results from the simulation results are 
described in the next sections. The complete set of programs, parameters values, and data files, 
including network and demand information, can be found in an online repository (Rodriguez-Roman, 
2022).  

5.1.1. Application Setting: Zonal and Network Systems    

The San Juan Metropolitan Area (SJMA) was selected as the application region. The Metropolitan Bus 
Authority (MBA), the largest bus service in Puerto Rico with 23 fixed routes, operates in this region. The 
SJMA was divided into 100 zones for the simulation of the bus service demand. The region’s 951 US 
Census block zones were used in the paratransit demand model; as they were not essential to illustrate 
the study’s contribution, fewer zones were used in the bus zonal system to reduce the computational 
time of the simulations. A road network composed of 2,457 links and 1,067 nodes was created for the 
bus network design problem. Demographic and network data were extracted and adapted from US 
Census sources. Figure 6 presents the application region, zonal systems, and road network used in the 
simulation.  

Figure 6. Zones and road network. 

5.1.2. Demand, Supply, and Equity Models and Parameters 

Fixed demand models were used in the simulations. A total of 3,825 origin-destination (OD) pairs were 
considered in the bus demand model; the total daily travel demand for the design period was set to 
25,000 trips. For each OD pair connected by a bus network, bus travel demand was distributed across 
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the two shortest network paths using a logit model. The logit model only accounted for the travel times 
on each path. For simplicity, the route frequencies were not considered in the logit model. The service 
frequencies on the bus network were set to equal the upper bound of each route’s load factor 
constraint (Fan, 2004). Computed frequencies that were less than the minimum service frequency or 
greater than the maximum service frequency were set to the minimum or maximum frequency 
treshhold value, respectively. The total annual demand for the paratransit service was set at 250,000 
trips, which were distributed across 112,010 OD pairs. Following MBA’s service regulations, service  
holes were eliminated from PSAs and only OD trips that started and ended within the PSA were 
considered as feasible in the simulations. The demand matrices for both modes were generated using 
simulations. It was assumed that the budget for operational expenses was $33 million. 

The populations covered by the PSA and the bus service were needed to compute the 𝜎𝜎𝑔𝑔𝑔𝑔 terms of the 
inequality objective function. Covered population totals were computed using the GIS-based areal 
interpolation method (O’Neill et al., 1994). The coverage area of a bus route network was defined to be 
the same as its minimum PSA; the population within this area was considered in the 𝜎𝜎𝑔𝑔,𝑏𝑏𝑏𝑏𝑏𝑏 terms. The 
population groups were defined as the people within each municipality that composes the SJMA and 
that have incomes of less than $25,000. The GIS operations were performed using the US Census block 
shapefile for the region. The 𝜀𝜀 parameter in Equation 5 was set to 0.75. 

5.1.3. Procedures and Key Algorithmic Parameters  

The Initial Candidate Route Set Generation Procedure proposed by Fan (2004) was used in the 
simulations to generate an initial set of candidate bus network designs. As previously stated, Fan’s bus 
network design procedures were adapted and applied in the BNDP. The selected solution quality criteria 
were based on Deb et al.’s (2002) non-dominated sorting genetic algorithm II, which was modified to 
consider the budget constraint. Designs that violated the budget constraint were assigned the worst 
Pareto rank obtained from the feasible solutions, plus one. In Table 1, key algorithmic parameter values 
are reported.  

Table 1. Key GA-PSA Parameter Values 
Parameter Value 

𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚  30 
𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝 30 
𝜂𝜂𝑏𝑏 64  
𝜂𝜂𝑝𝑝 32 
𝜂𝜂𝐼𝐼𝐼𝐼 64 
𝜂𝜂𝑔𝑔𝑔𝑔 30 

𝜂𝜂𝑚𝑚1, 𝜂𝜂𝑚𝑚2 2.5% and 5%, respectively, of the number of vertices in polygon 
𝛼𝛼𝑔𝑔 1207 meters (3/4 miles) 

Δ𝑚𝑚𝑚𝑚𝑚𝑚 ,Δ𝑚𝑚𝑚𝑚𝑚𝑚  1207 meters, 82021 meters 
𝜌𝜌𝑐𝑐  {0.25, 0.75} 
𝜌𝜌𝑐𝑐𝑐𝑐 {0.75, 0.25} 
𝜌𝜌𝑒𝑒 0.8 
𝜌𝜌𝑣𝑣 0.5 
𝜍𝜍 𝜋𝜋/6 radians 
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5.1.4. Test Results and Discussion 

Two sets of parameters were considered: Set 1, defined as {𝜌𝜌𝑐𝑐 = 0.25,𝜌𝜌𝑐𝑐𝑐𝑐 = 0.50}, and Set 2, defined 
as {𝜌𝜌𝑐𝑐 = 0.75,𝜌𝜌𝑐𝑐𝑐𝑐 = 0.25}. Note that parameter Set 1 ensures that GA-PSA relies more on the 
mutation operation to generate candidate designs than Set 2. The BNDP was first applied to generate an 
initial set of bus route network designs, and from this initial set of designs the 32-best designs were 
selected (i.e., 𝜂𝜂𝑝𝑝 = 32) for improvement of their PSAs. For each parameter set, 10 trial runs of the 
GA-PSA (i.e., the simulation) were performed, and each trial run had the same set of 32-best designs. 
The quality of solutions was assessed using the hypervolume improvement metric, which summarizes 
the percent change in the dominated objective function space. Figure 7 presents the average 
hypervolume percent improvement for the Set 1 and Set 2 trials. On average, GA-PSA expanded the 
dominated objective function space faster when Set 1 parameters were used, which emphasizes 
mutation-only. However, for both sets of trials, the largest improvement occurred in the design 
evaluation range of 15,000 to 20,000 after a particular design in the set of 32-best designs was reached. 
This result suggests that incorporating greedy search techniques within GA-PSA could improve its 
performance, particularly when evaluating a design is computationally expensive and it is impractical to 
expect thousands of design evaluations. The greedy search techniques could consist of, for example, a 
limited series of initial buffer expansions for each of the 32-best designs, followed by a focused 
exploration of new buffer design expansions that resulted in the greatest performance improvements. 
 

 
Figure 7. Average percent change in dominated objective function space for GA-PSA tests. 

 
Figure 8 presents a parallel coordinate plot of the scaled objective function values for a set of non-
dominated designs. These designs were generated in a trial run of GA-PSA with Set 1 parameters. In this 
run, 12,519 feasible PSA designs were generated, but only 33 non-dominated designs were identified 
(Figure 8 presents the objective function values for the 33 designs). Ultimately, after the PSA 
improvements, five bus network designs formed the basis of the non-dominated solutions, as can be 
seen by the concentration of solutions on five points in the 𝑀𝑀𝑏𝑏 column. As expected, given budget 
constraints, there are trade-offs between optimizing the effectiveness of the bus service, the 
effectiveness of the paratransit service, and the access to the services. For example, the designs with the 
lowest 𝑀𝑀𝑏𝑏 values had the highest 𝑀𝑀𝑝𝑝 and 𝐸𝐸 objective function values in the set. Provided that there is 
sufficient budget, the heuristic will attempt to expand the service area as much as possible at the 
GA-PSA step in search of lower 𝑀𝑀𝑝𝑝 and 𝐸𝐸 values.  
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Figure 8. Scaled objective function values for non-dominated solutions for GA-PSA tests. 

 
As an example, Figure 9 presents the PSA for the solution with the lowest 𝑀𝑀𝑝𝑝 value in the 33-non-
domnated solution set, along with the minimum PSA coverage from which it was generated. This PSA 
covers 98% of the study region and it resulted in an 𝑀𝑀𝑝𝑝 = 1968 (99% of the demand met) and an 𝐸𝐸 =
0.02, with only $2,451 in remaining budget (out of $33 million). In this case, GA-PSA would have been 
able to generate a PSA that covered the study region if the budget was $86,100 higher (𝑐𝑐𝑝𝑝 was set to 
$45/trip). 

 
Figure 9. Minimum PSA (a) and its best expansion PSA (b) according to the 𝑴𝑴𝒑𝒑 objective. 

5.2. Numerical Experiments for MSA Design Problem 
 
Besides illustrating the application of the MSA design problem, the primary objective of the GA-MSA 
experiments was to examine the solutions generated by the heuristic given a hypothetical problem with 
a simple solution space. In addition, the performance of the GA-MSA heuristic with the Set 1 
({𝜌𝜌𝑐𝑐 = 0.25,𝜌𝜌𝑐𝑐𝑐𝑐 = 0.50}) and Set 2 ({𝜌𝜌𝑐𝑐 = 0.75,𝜌𝜌𝑐𝑐𝑐𝑐 = 0.25}) parameters was examined. The key 
algorithm parameters used in the numerical tests are reported in Table 2. 
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Table 2. Key GA-PSA Parameter Values 

Parameter Value 
𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚  60 
𝜂𝜂𝐼𝐼𝐼𝐼 40  
𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝 64 
𝜂𝜂𝑟𝑟 1 

𝜂𝜂𝑚𝑚1, 𝜂𝜂𝑚𝑚2 5% and 10%, respectively, of the number of vertices in polygon 
𝛼𝛼𝑏𝑏 108 meters   
𝜌𝜌𝑐𝑐  {0.25, 0.75} 
𝜌𝜌𝑐𝑐𝑐𝑐 {0.50, 0.25} 
𝜌𝜌𝑒𝑒 0.8 

 

5.2.1. Application Setting, Models, and Parameters 
 
The region selected for the application of the MSA design problem was the municipality of Mayagüez, 
Puerto Rico. Specifically, the study area presented in Figure 10 was selected. Located in this area is the 
historical urban center of Mayagüez, along with office and apartment buildings, the Mayagüez campus 
of the University of Puerto Rico, and various other trip attractors. Figure 10 also presents three polygons 
that represent communities categorized as “special” (in Spanish, “comunidades especiales”) by the 
Puerto Rican government given their historical economic disadvantage. The three special communities 
represented the 𝚿𝚿 city zones in the tests.  
 

 
Figure 10. Study area for MSA tests. 

To create a simple solution space, the study area was divided using a grid system, with each grid cell 
having 53-by-55-meter dimensions, and the objective functions were defined with the general form: 

 

𝑀𝑀𝑧𝑧 =
∑ 𝐼𝐼(𝑗𝑗, 𝒔𝒔)𝑚𝑚𝑧𝑧𝑧𝑧𝑗𝑗∈𝑳𝑳

𝜗𝜗(𝒔𝒔)
 

 (10) 
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where 𝑧𝑧 refers to the general objective index (𝑧𝑧 = {𝑜𝑜, 𝑐𝑐}), 𝑗𝑗 is a cell index, 𝑳𝑳 is the set of cells, 𝑚𝑚𝑗𝑗 is the 
objective function contribution obtained by including cell 𝑗𝑗 in the MSA, 𝜗𝜗(𝒔𝒔) is the surface area of the 
MSA, and 𝐼𝐼(𝑗𝑗, 𝒔𝒔) is an indicator function that has the value of 1 if cell 𝑗𝑗 is within the MSA, and 0 
otherwise. By predefining each 𝑚𝑚𝑧𝑧𝑧𝑧  value, this objective function specification allows for easy a priori 
demarcation of the study area regions that should be included in the MSA to maximize each objective 
function value. In Figure 11, the 𝑚𝑚𝑗𝑗 value surfaces for the 𝑀𝑀𝑜𝑜 and 𝑀𝑀𝑐𝑐 objectives are presented.  
 

 
Figure 11. Objective function value surfaces (white areas have higher 𝒎𝒎𝒋𝒋 values). 

5.2.2. Test Results and Discussion 
 
For each parameter set, 10 trial runs of the GA-MSA were performed, and each trial run had the same 
initial population of candidate MSA designs. As before, the quality of solutions was assessed using the 
hypervolume improvement metric. Figure 12 presents the average hypervolume percentage 
improvement for the Set 1 and Set 2 trials. In contrast to the GA-PSA tests, the heuristic expanded the 
dominated objective function space faster in the GA-MSA tests when Set 2 parameters were used, which 
emphasizes the crossover operation. 
 

 
Figure 12. Average percentage change in dominated objective function space for GA-MSA tests. 

In Figure 13, the objective function values for the MSA design generated in a trial run are plotted. The 
observed trade-off between the objective function values in the Pareto front is the result of the 
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predefined objective function surfaces presented in Figure 11. The best MSA designs generated in the 
trial run for the 𝑀𝑀𝑜𝑜 and 𝑀𝑀𝑐𝑐 objectives, independently, are illustrated in Figure 14. The GA-MSA found 
solutions that contained the areas with greater 𝑚𝑚𝑧𝑧𝑧𝑧  values, as predefined in the objective function 
surfaces presented in Figure 11. Interestingly, the best MSA solution according to the 𝑀𝑀𝑐𝑐 objective 
exhibits an impractical spike in the top left area of the MSA. Given that micromobility vehicles generally 
can only operate within the MSA, the spike in the MSA polygon is impractical as there is probably no 
path that a micromobility vehicle could use to access this area. There are at least two possible 
approaches to prevent this type of design. The most direct approach is to consider the road and 
sidewalk network of the study region and use the cut-set concept to ensure that the network within the 
MSA is connected (Zhang & Yang, 2004); this would introduce an additional constraint to the design 
problem. Another more indirect approach is to introduce a constraint to ensure a degree of smoothness 
in the polygon using, for example, a convex hull-based indicator (Maruyama et al., 2014). Note, 
however, that in practice the designs generated by the GA-MSA should only be a step within a more 
comprehensive planning process in which the algorithmically generated polygons would be polished and 
modified in discussions with the various stakeholders.  
 

 
Figure 13. Example of objective function values for a GA-MSA trial run. 

 

 
Figure 14. Example of best MSA designs (blue polygons) 

based on 𝑴𝑴𝒐𝒐 (a) and 𝑴𝑴𝒄𝒄 (b) objectives for a trial run. 
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Chapter 6. Closing Remarks 
 
An optimization-based approach was proposed that incorporates the design of transportation service 
areas. Models and heuristics were presented for the joint design of fixed route transit networks and 
their complementary PSA, and for the design of micromobility service areas. The proposed 
methodologies can be used to generate design alternatives that would, in theory, be discussed and 
modified in planning processes involving analysts, stakeholders, and decision-makers. The views of 
communities and other stakeholders could directly be reflected as inputs in the GA heuristics proposed. 
For example, naïve initial population procedures were presented that generate candidate designs based 
on mathematical procedures. However, designs generated as part of conversations with communities 
and service operators could be directly fed into the heuristics as initial designs that the algorithm tries to 
improve. 
 
As the GA-PSA and GA-MSA procedures do not depend on the mathematical characteristics of the 
design problem’s objective function or constraints, the proposed approaches can be adapted with ease 
to account for other agency considerations beyond the ones considered in this report. For example, in 
the PSA design problem, the equity objective considered here could be substituted by a function that 
reflects the PSA modification problem faced by agencies redesigning their services due to budget cuts. In 
this context, PSA reductions, subject to regulatory constraints, are a common cost reduction strategy 
(Government Accountability Office, 2012). The proposed design approach can be used to objectively 
search for PSA designs that equitably distribute the cost of the PSA reduction across different population 
groups. The proposed approach could also be applied for the opposite problem when the budget 
increases and the agency must decide how to expand their PSA so that the benefits from the budget 
increase are equitably distributed. In both situations, PSA coverage constraints could be introduced to 
ensure, for example, that only a percent of the residents living within the existing PSA are negatively 
affected by its redesign.  
 
Emerging IT-enabled transit services (e.g., microtransit) offer the opportunity to provide expanded or 
targeted services to particular groups (e.g., poor communities, people with certain types of disabilities) 
and develop other strategies to provide equitable mobility options (National Academies of Sciences, 
Engineering, and Medicine, 2016). Given the variety of services enabled by IT, a possible extension to 
the work presented in this report is a design problem that jointly defines multiple types of service areas 
for different types of service types that could be distinguished, for example, by their hours of operation, 
spatial coverage, and user group.  
 
There are several opportunities for future research. For example, besides the greedy search strategies 
mentioned in Section 5.1.4, the GA-PSA can also be improved by including local search mechanisms that 
direct the evolution of PSA boundaries based on the heuristic’s performance on preceding iterations, an 
idea that could also be applied to the GA-MSA. For example, parameters could be adapted given 
repeated failures (or successes) in generating non-dominated solutions. This could include changing 
which boundary segments can be considered in the search process or modifying the magnitude of the 
boundary expansions or contractions. Additionally, the GA-PSA can be modified by adding a procedure 
that explores if the polygons generated by the GA-PSA can substitute and improve the PSA of designs 
that were not among the 𝜂𝜂𝑝𝑝-best designs considered in Step 4. Naturally, this process would need to 
ensure that the minimum 𝐵𝐵(𝑹𝑹𝑘𝑘 ,Δ𝑚𝑚𝑚𝑚𝑚𝑚) of the network is contained by the substitute PSA and that the 
budget constraint is not violated by the swap. A potential challenge of this modification, and the GA-PSA 
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in general, is the computational cost associated with the model systems used by a transit agency to 
predict demand for its services.  
 
In this study, simple demand models were used, but in practice, an agency could use more time-
consuming models to compute the objective functions and constraints of interest, which could limit the 
number of designs that could be evaluated. This is particularly true if more direct and comprehensive 
measures of congestion reductions are desired. For example, in the PSA problem, congestion is tackled 
by searching for designs that maximize the usage of transit. However, one could imagine a regional 
agency would be interesting in searching for transit network designs with the explicit objective of 
reducing total travel delays in the road network (𝑀𝑀𝑐𝑐(𝑹𝑹,𝒇𝒇, 𝒔𝒔)), and then the decision maker’s objective 
would be:    

 
min 𝒁𝒁 = �𝑀𝑀𝑏𝑏(𝑹𝑹,𝒇𝒇),𝑀𝑀𝑝𝑝(𝒔𝒔),𝑀𝑀𝑐𝑐(𝑹𝑹,𝒇𝒇, 𝒔𝒔)),𝐸𝐸(𝑹𝑹,𝒇𝒇, 𝒔𝒔)�  (2b) 

 
As discussed in Section 3.1.3, to compute 𝑀𝑀𝑐𝑐(𝑹𝑹,𝒇𝒇, 𝒔𝒔)), however, would require complex and time-
consuming travel demand models, and the total run time of the proposed procedures would not be 
reasonable in a real-world context. This problem could be addressed by developing greedy 
GA-PSA/GA-MSA and/or by new surrogate-based optimization techniques that provide computationally 
inexpensive approximations to the computationally expensive model systems. 
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The National Institute for Congestion Reduction (NICR) will emerge as a 
national leader in providing multimodal congestion reduction strategies 
through real-world deployments that leverage advances in technology, 
big data science and innovative transportation options to optimize the 
efficiency and reliability of the transportation system for all users. Our 
efficient and effective delivery of an integrated research, education, 
workforce development and technology transfer program will be a model 
for the nation. 
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